2017年河南省中考数学试券

满分: 120分

一、选择题(每小题3分,共10小题,合计30分)

1.	下列各数中日	11大的	数是(
----	--------	------	-----	--

A. 2

B. 0

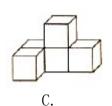
C. -1

D. -3

2. 2016年, 我国国内生产总值达到74.4万亿元, 数据"74.4万亿"用科学记数法表示为()

A. 74.4×10^{12} B. 7.44×10^{12} C. 7.44×10^{13} D. 7.44×10^{14}

3. 某几何体的左视图如下图所示,则该几何体不可能是(



 $\frac{1}{x-1} - 2 = \frac{3}{1-x}$, 去分母得(

A.
$$1-2(x-1)=-3$$

B.
$$1-2(x-1)=3$$

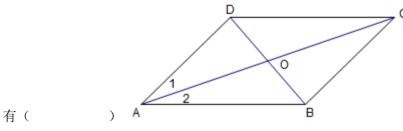
C.
$$1-2x-2=-3$$

D.
$$1-2x+2=3$$

5. 八年级某同学 6 次数学小测验的成绩分别为: 80 分, 85 分, 95 分, 95 分, 95 分, 100 分, 则该 同学这6次成绩的众数和中位数分别是()

- A. 95分, 95分 B. 95分, 90分 C. 90分, 95分 D. 95分, 85分
- 6. 一元二次方程 $2x^2-5x-2=0$ 的根的情况是 ()
 - A. 有两个相等的实数根
- B. 有两个不相等的实数根
- C. 只有一个实数根
- D. 没有实数根

7. 如图,在 \Box ABCD中,对角线 AC,BD相交于点 O,添加下列条件不能判定 \Box ABCD 是菱形的只



A. AC⊥BD B. AB=BC

- C. AC=BD
- D. ∠1=∠2

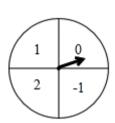
8. 如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数学一 1,0,1,2. 若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线 上时,不记,重转),则记录的两个数字都是正数的概率为(

A. $\frac{1}{8}$

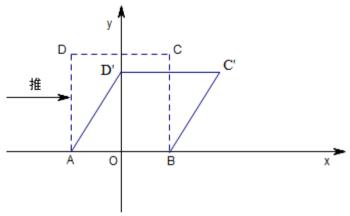
B. $\frac{1}{6}$

C. $\frac{1}{4}$

D. $\frac{1}{2}$



9. 我们知道: 四边形具有不稳定性. 如图,在平面直角坐标系中,边长为 2 的正方形 ABCD 的边 AB 在 x 轴上,AB 的中点是坐标原点 O,固定点 A,B,把正方形沿箭头方向推,使点 D 落在 y 轴 正半轴上点 D'处,则点 C 的对应点 C'的坐标为(



A. $(\sqrt{3}, 1)$

B. (2, 1)

C. $(1, \sqrt{3})$

D .

 $(2, \sqrt{3})$

10. 如图,将半径为 2,圆心角为 120°的扇形 OAB 绕点 A 逆时针旋转 60,点 O,B 的对应点分别为 O',B',连接 BB',则图中阴影部分的面积是()

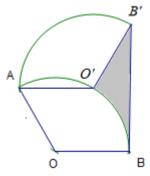
A. $\frac{2\pi}{3}$

 $2\sqrt{3} - \frac{\pi}{3}$

 $2\sqrt{3} - \frac{2\pi}{3}$

D .

 $4\sqrt{3} - \frac{2\pi}{3}$



二、填空题: (每小题3分,共5小题,合计15分)

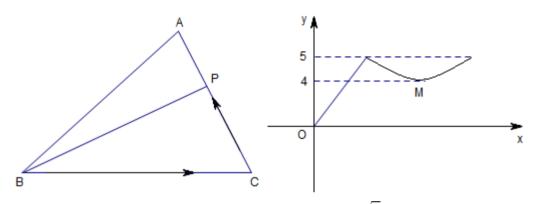
11. 计算:
$$2^3 - \sqrt{4} =$$

x-2<0000

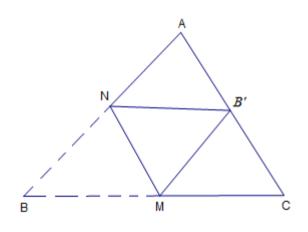
12. 不等式组

的解集是

- $y=-\frac{2}{x}$ 13. 已知点 A (1, m), B (2, n) 在反比例函数 x 的图象上,则 x 与 x 的图象上,则 x 与 x 的关系为______.
- 14. 如图 1,点 P 从 Δ ABC 的顶点 B 出发,沿 B \rightarrow C \rightarrow A 匀速运动到点 A,图 2 是点 P 运动时, 线段 BP 的长度 y 随时间 x 变化的关系图象,其中 M 为曲线部分的最低点,则 Δ ABC 的面积是



15. 如图,在直角 Δ ABC中, \angle A=90°,AB=AC,BC= $\sqrt{2}$ +1 ,点 M、N 分别是边 BC、AB上的动点,沿 MN 所在的直线折叠 \angle B,使点 B 的对应点 B'始终落在边 AC 上,若 Δ MB'C 为直角三角



形,则 BM 的长为____

- 三、解答题: (本大题共8个小题,满分75分)
- 16 . 先 化 简 , 再 求 值 : $(2x+y)^2+(x-y)(x+y)-5x(x-y)$, 其 中 $x=\sqrt{2}+1$, $y=\sqrt{2}-1$

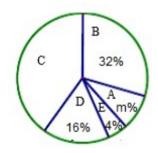
17. 为了了解同学们每月零花钱的数量,校园小记者随机调查了本校部分同学,根据调查结果,绘制了如下两个尚不完整的统计图表.

请根据以上图表,解答下列问题:

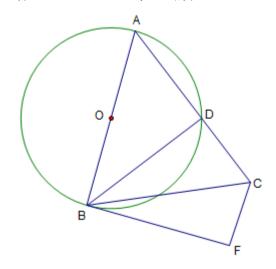
- (1) 填空: 这次调查的同学共有______人, a+b=____, m=____;
- (2) 求扇形统计图中扇形 C 的圆心角度数;
- (3) 该校共有学生 1000 人,请估计每月零花钱的数额 x 在 $60 \le x < 120$ 范围的人数. 调查结果统计表

组别	分组(单位:元)	人数
A	0≤x<30	4
В	30≤x<60	16
С	60≤x<90	a
D	90≤x<120	b
Е	x≥120	2

调查结果扇形统计图



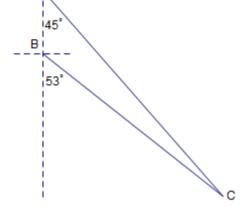
- 18. 如图,在 \triangle ABC中,AB=AC,以 AB 为直径的 \bigcirc O 交 AC 边于点 D,过点 C 作 CF // AB,与过点 B 的切线交于点 F,连接 BD.
- (1) 求证: BD=BF;
- (2) 若 AB=10, CD=4, 求 BC 的长.



19. 如图所示,我国两艘海监船 A,B 在南海海域巡航.某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船 C,此时,B 船在 A 船的正南方向 5 海里处,A 船测得渔船 C 在其南偏东 45°方向,B 船测得渔船 C 在其南偏东 53°方向,已知 A 船的航速为 30 海里/小时,B 船的航速为 25 海

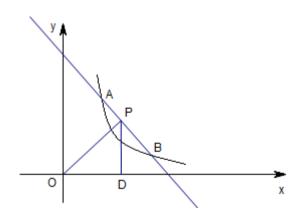
 $\sin 53^{\circ} \approx \frac{4}{5}$ 里/小时,问 C 船至少要等待多长时间才能得到救援? (参考数据:

$$\cos 53^{\circ} \approx \frac{3}{5}$$
, $\tan 53^{\circ} \approx \frac{4}{3}$, $\sqrt{2} = 1.414$)



20. 如图,一次函数 y=-x+b 与反比例函数 $y=\frac{k}{x}(x>0)$ 的图象交于点 A(m, 3)和 B(3, 1).

- (1) 填空: 一次函数的解析式为_____, 反比例函数的解析式为_____;
- (2) 点 P 是线段 AB 上一点,过点 P 作 PD $\perp x$ 轴于点 D,连接 OP,若 Δ POD 的面积为 S,求 S 的取值范围.



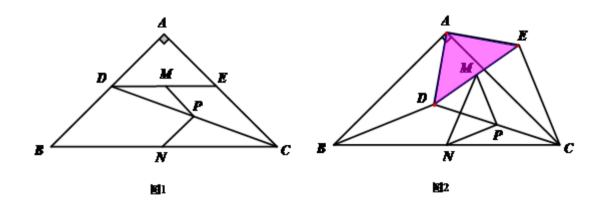
- 21. 学校"百变魔方"社团准备购买 A, B两种魔方,已知购买 2 个 A 种魔方和 6 个 B 种魔方共需 130 元,购买 3 个 A 种魔方和 4 个 B 种魔方所需款数相同.
- (1) 求这两种魔方的单价;
- (2) 结合社员们的需求,社团决定购买 $A \times B$ 两种魔方共 $100 \land (其中 A 种魔方不超过 50 \land)$,某商店有两种优惠活动,如图所示:

优惠活动:

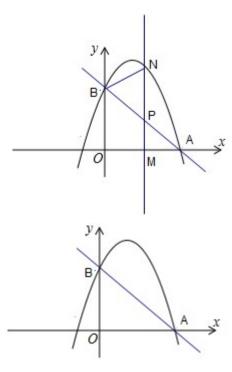
活动一:"疯狂打折", A 种魔方 8 折, B 种魔方 4 折. 活动二:购买一个 A 种魔方送一个 B 种魔方.

请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.

- 22. 如图 1,在 *RtΔABC* 中,AB=AC,点 D、E 分别在边 AB,AC 上,AD=AE,连接 DC,点 M,P,N 分别为 DE,DC,BC 的中点.
- (1) 观察猜想: 图 1 中, 线段 PM 与 PN 的数量关系是 _____, 位置关系是_____;
- (2) 探究证明: 把 \triangle ADE 绕点 A 逆时针方向旋转到图 2 的位置,连接 MN,BD,CE,判断 \triangle PMN的形状,试说明理由:
- (3) 拓展延伸: 把 Δ ADE 绕点 A 在平面内自由旋转,若 AD=4,AB=10,请直接写出 Δ PMN 面积的最大值.



$$y = -\frac{4}{3}x^2 + bx + c$$
 经过点 A, B.



- (1) 求B点的坐标和抛物线的解析式;
- (2) M(m, 0) 为 x 轴上一动点,过点 M 且垂直于 x 轴的直线与直线 AB 及抛物线分别 交于点 P , N .

①点M在线段OA上运动,若以B,P,N为顶点的三角形与 ΔAPM 相似,求点M的坐标;

②点 M 在 $^{\chi}$ 轴上自由运动,若三个点 M、P、N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称 M,P,N 三点为"共谐点".请直接写出使得 M、P、N 三点成为"共谐点"的 m 的值.

2017年河南省中考数学试卷参考答案

- 一、选择题(每小题3分,共10小题,合计30分)
- 1. A
- 2. C
- 3. D
- 4. A
- 5. A
- 6. B
- 7. C
- 8. C.
- 9. D
- 10. C

- 二、填空题: (每小题3分,共5小题,合计15分)
- 11. 6
- $_{12}$. −1<x≤2
- 13. m < n.
- 14. 12

$$\frac{\sqrt{2}+1}{2}$$

15. 1或 2

三、解答题: (本大题共8个小题,满分75分)

16.

$$(2x+y)^2+(x-y)(x+y)-5x(x-y)$$

$$=4x^2+4xy+y^2+x^2-y^2-5x^2+5xy$$

$$=5x^2-5x^2+y^2-y^2+4xy+5xy$$

=9xy

当
$$x=\sqrt{2}+1$$
 , $y=\sqrt{2}-1$ 时,原式= $9\times(\sqrt{2}+1)(\sqrt{2}-1)=9\times1=9$

17.

解: (1)50,28,8;

(2) 1-32%-8%-4%-16%=40%, 360°×40%=144°:

28

(3) $1000 \times 50 = 560$ (人),答:每月零花钱的数额 x 在 $60 \le x < 120$ 范围的人数为 560

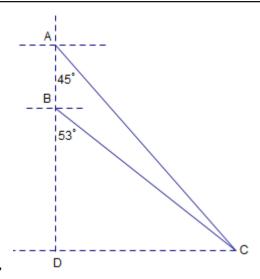
人.

18.

解: (1)证明: :: AB=AC,

- $\therefore \angle ABC = \angle ACB$
- AB//CF,
- $\therefore \angle ABC = \angle BCF$,
- $\therefore \angle ACB = \angle BCF$,
- 又:AB 为直径,
- ∴ ∠*ADB*=∠*BDC*=90°,
- ∵BF 是⊙O 切线, ∴AB \ BF,
- $\therefore AB//CF$, $\therefore \angle F=90$ °,
- ∴ $\triangle BDC \cong \triangle BFC$,
- $\therefore BD = BF$:
- (2) 解: ::AB=10, AC=4, ::AD=6, ::BD=8, $::BC=4\sqrt{5}$

解:如图,过点C作 $CD \perp AB$ 于点D,设BD为x,在 $Rt \triangle \angle ACD$ 中, $\angle A=45$ °,



 $\therefore AD = DC = x + 5$,

$$\text{tan 53} = \frac{CD}{BD}$$
 , 得 $\frac{x+5}{x} = \frac{4}{3}$,

∴*x*=15,

则
$$_{BC}=\sqrt{15^2+20^2}=25$$
 , $_{AC}=\sqrt{20^2+20^2}=20\sqrt{2}$

$$\therefore A$$
到 C 用时为: $\frac{20\sqrt{2}}{30} \approx 0.94(h)$, B 到 C 用时为: $\frac{25}{25} = 1(h)$,

·· 0.94<1 , ::至少要等 0.94 小时.

20.

$$g(x) = \frac{y}{x} + \frac{3}{x}$$

(2) 解: 由 (1) 得 3m=3 , m=1, 则 A 点的坐标为 (1, 3) , 设 P 点的坐标为 (

$$a$$
 , $-a+4$) ($1 \le a \le 3$) , 则 $S = \frac{1}{2}OD \cdot PD = \frac{1}{2}a \cdot (-a+4) = -\frac{1}{2}(a-2)^2 + 2$,
$$-\frac{1}{2} < 0$$
 , $: \ = a=2 \$ 时, s 有最大值 2 , 当 $a=1$ 或 3 时, s 有最小值为 $S = -\frac{1}{2} \times (1-2)^2 + 2 = \frac{3}{2}$,

 $\therefore \frac{3}{2} \le S \le 2$

21.

解: (1)设A型魔方的单价为a元,B型魔方单价为b元,则由题意,得:

2a+6b=130iiii

a=20666

,解方程,得:

答: A型魔方的单价为20元,B型魔方单价为15元.

(2) 设A型魔方的数量为x个,B型魔方数量为(100—x)个,设总费用为W元,

活动一: W₁=0.8×20x+0.4×15(100—x)=10x+60;

活动二: $W_2=20x+15$ [(100—x) —x]=—10x+1500;

当 W_1 $\stackrel{i}{\circ}$ W_2 时,即 10x+60 $\stackrel{i}{\circ}$ —10x+1500,解得 x $\stackrel{i}{\circ}$ 45, \therefore 当 0 $\stackrel{i}{\circ}$ x $\stackrel{i}{\circ}$ 45 时,活动一方案更优惠:

当 W_1 = W_2 时,即 10x+60=—10x+1500,解得 x=45, ∴ 当 x=45 时,活动一和活动二均可;

当 W_1 $\stackrel{i}{\cdot}$ W_2 时,即 10x+60 $\stackrel{i}{\cdot}$ —10x+1500,解得 x $\stackrel{i}{\cdot}$ 45,又: $x \le 50$, ... 当 45 $\stackrel{i}{\cdot}$ $x \le 50$ 时,活动二方案更优惠;

综上所述,当 0 $\overset{i}{\iota}$ x $\overset{i}{\iota}$ 45 时,活动一方案更优惠;当 x=45 时,活动一和活动二均可;当 45 $\overset{i}{\iota}$ x $\overset{i}{\iota}$ 50 时,活动二方案更优惠.

22.

解: (1) PM=PN; PM LPN;

(2) ΔPMN 为等腰直角三角形,理由如下:

由题可知: $\triangle ABC$ 和 $\triangle ADE$ 均为等腰直角三角形,

 $\therefore AB=AC$, AD=AE, $\angle BAC=\angle DAE=90$ °,

 $\therefore \angle BAD + \angle DAC = \angle CAE + \angle DAC, \quad \therefore \angle BAD = \angle CAE,$

 $\therefore \Delta BAD \cong \Delta CAE$, $\therefore \angle ABD = \angle ACE$, BD = CE,

又:M、P、N分别是DE、CD、BC的中点,

 \therefore PM 是 ΔCDE 的中位线,

 $\frac{1}{2}$ ∴ PM // CE \exists PM= $\frac{1}{2}$ CE, \angle MPD= \angle ECD= \angle ACD + \angle ACE:

同理,PN//BD且 $PN=\frac{1}{2}$ BD, $\angle DBC=\angle PNC$,

 \mathbb{Z} : BD=CE, $\angle ABD = \angle ACE$,

- $\therefore PM=PN$,
- \therefore \angle MPN= \angle MPD+ \angle DPN= \angle ECD+ \angle DCN+ \angle CNP
- $= \angle ACD + \angle ACE + \angle DCN + \angle CBD$
- $= \angle ACD + \angle DCN + \angle ABD + \angle CBD$
- $= \angle ACB + \angle ABC = 90$ °,
- $\therefore PM \perp PN$,
- : Δ*PMN* 为等腰直角三角形;

 $\frac{49}{2}$

 $y=-\frac{2}{3}x+c$ 23. 解: (1) **:**直线 过 A (3, 0),

$$\frac{-\frac{2}{3} \times 3 + c = 0}{\therefore}$$
, 解得: $c = 2$

∴直线 AB 的表达式为:

$$y=-\frac{2}{3}x+2$$
 , ∴点 B 坐标为 (0, 2).

∵抛物线过A(3,0),B(0,2),

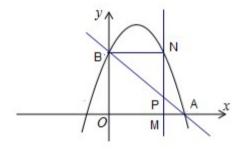
$$\begin{cases} -\frac{2}{3} \times 9 + 3b + c = 0 \end{aligned}$$

$$y = -\frac{4}{3}x^2 + \frac{10}{3}x + 2$$

(2) 依题可知: M(m, 0),

$$y=-\frac{2}{3}x+2$$
 于点 P, 交抛物线 $y=-\frac{4}{3}x^2+\frac{10}{3}x+2$ 于点 N, $(m, -\frac{4}{3}m^2+\frac{10}{3}m+2$), P $(m, -\frac{2}{3}m+2)$), ∴ΔΑΡΜ 相似于ΔΒΡΝ,

$$-\frac{4}{3}m^2 + \frac{10}{3}m + 2$$
), $P(m, -\frac{2}{3}m + 2$), ΔAPM 相似于 ΔBPN ,



①ΔAPM~ΔBPN,则 ∠*AMP*=∠*BNP*=90°,

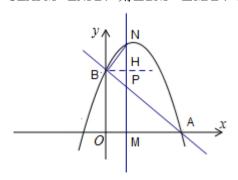
∴BN // У 轴, ∴B, N 的纵坐标相同为 2,

∴
$$-\frac{4}{3}m^2 + \frac{10}{3}m + 2$$
 =2, $\#$ ##: $m_1 = 0$, $m_2 = \frac{5}{2}$,

:m=0 时,B与N重合, Δ BPN 不存在.

∴
$$m = \frac{5}{2}$$
, 此时 M ($\frac{5}{2}$, 0):

②ΔAPM~ΔNPB,则∠BNP=∠MAP,过点作 BH⊥MN,则 H(m, 2),



 \therefore \angle MAP= \angle BNP, \therefore tan \angle MAP= tan \angle BNP,

$$\therefore \frac{BH}{NH} = \frac{OB}{OA} = \frac{2}{3} \quad ,$$

$$\frac{m}{-\frac{2}{3}m^2 + \frac{10}{3}m + 2 - 2} = \frac{2}{3}$$
∴ $\#4: m_1=0 \text{ ($\pm$$) , } m_2=\frac{11}{8}$,

∴m =
$$\frac{11}{8}$$
 , 此时M ($\frac{11}{8}$, 0);

$$\frac{1}{2}$$
 $\frac{-1}{4}$ ± -1 .